
Clustering - Football

Aim of the Project

Data Collection & Cleaning

Data Source

Data Cleaning

Flattening MultiIndex Columns

Normalizing Column Names

Cleaning the squad Column

Feature Engineering

Defensive Features

Attacking Features

Possession & Passing Features

Applying K-means Clustering

Finding the Optimal K (Elbow Method)

Visualizing Clusters (PCA)

Example Findings

Aim of the Project

🔗 App link: Streamlit App

This project aims to cluster football teams and players based on playing styles and performance metrics.

For teams: The goal is to group clubs with similar tactical styles, helping analyse their strengths, weaknesses, and unique

identities.

For players: The aim is to identify players with similar profiles, spot standout performers, and understand their strengths

and weaknesses in context.

Data Collection & Cleaning

Data Source

Data was scraped from FBRef using pandas.read_html() .

Example:

The same process was applied to player stats.

Data Cleaning

Scraped data often contains messy formatting, such as:

MultiIndex column headers

"Unnamed" columns

Irregular naming conventions

A generic cleaning script was used across all tables to ensure consistency.

1 # Example Query to scrape Champions league data table

2 standard_stats = pd.read_html(

3 'https://fbref.com/en/comps/8/stats/Champions-League-Stats',

4 attrs={'id': 'stats_squads_standard_for'}

5)[0]

https://appclustering-myrbfbrv3khmwbpxt9ktez.streamlit.app/
https://fbref.com/en/

Flattening MultiIndex Columns

This joins multi-level column headers with underscores and removes "Unnamed" levels.

Normalizing Column Names

This standardizes all column names by:

Lowercasing

Replacing spaces with underscores

Removing duplicate/trailing underscores

Cleaning the squad Column

This removes country prefixes (e.g. "ENG Manchester City" → "Manchester City").

Feature Engineering

Most scraped stats are raw totals. To normalize for playing time, I calculated per 90-minute metrics, making comparisons fair

across teams or players with different minutes played.

1 standard_stats.columns = [

2 '_'.join(

3 [lvl if not str(lvl).startswith('Unnamed') else '' for lvl in col]

4).strip('_')

5 for col in standard_stats.columns.values

6]

1 def clean_column(col):

2 col = col.strip().lower()

3 col = re.sub(r'\s+', '_', col)

4 col = re.sub(r'_+', '_', col)

5 col = col.strip('_')

6 return col

7

8 standard_stats.columns = [clean_column(col) for col in standard_stats.columns]

1 standard_stats['squad'] = standard_stats['squad'].apply(

2 lambda x: x.split(' ', 1)[1] if isinstance(x, str) and ' ' in x else x

3)

1 squad_goalkeeping['performance_sota90'] =

squad_goalkeeping['performance_sota']/squad_goalkeeping['playing_time_min']*90

2

3 squad_defensive_actions['blocks_blocks90'] =

squad_defensive_actions['blocks_blocks']/squad_defensive_actions['playing_time_min']

4 squad_defensive_actions['tkl+int90'] =

squad_defensive_actions['tkl+int']/squad_defensive_actions['playing_time_min']

5 squad_defensive_actions['clr90'] = squad_defensive_actions['clr']/squad_defensive_actions['playing_time_min']

6

7 defensive_features_df = (squad_goalkeeping[['squad','performance_ga90','performance_sota90']]

Additonally, I grouped relevent attributes together based on the feature set I was creating, so example above is defensive

features

Similar features created for players

Defensive Features

Index(['squad', 'performance_ga90', 'performance_sota90', 'blocks_blocks90','tkl+int90', 'clr90']

Goals conceeded, Shots conceeded, Blocks, Tackles, Clearances

Attacking Features

['squad', 'per_90_minutes_gls', 'per_90_minutes_xg', 'standard_sh/90','standard_sot/90']

Goals, xG, Shots, Shots on target

Possession & Passing Features

Index(['squad', 'poss', 'touches_att_3rd90', 'total_cmp90', 'total_cmp%','prgp90']

Possession, Touches in attacking 3rd, Pass completion, Pass completion %, progressive passes

Applying K-means Clustering

Now we have our data ready, we will apply K-means clustering.

First we standardise each feature (mean = 0, std=1) ensures all features contribute equally.

Then we apply K-Means clustering to the scaled data.

Then assisn each row (team/player) to one of k clusters.

Finding the Optimal K (Elbow Method)

We can identify the optimal K-Value (Number of Clusters) by using the Elbow Method

First we need to calculate inertia, this is the sum of squared distances between each data point and its assigned cluster centre

Where:

xi is a data point

μci is the centroid of its assigned cluster

Lower inertia means points are closer to their cluster centers.

8

.merge(squad_defensive_actions[['squad','blocks_blocks90','tkl+int90','clr90']],on='squad' ,how='left'))

1 # Scale features

2 scaler = StandardScaler()

3 X_scaled = scaler.fit_transform(X)

4

5 # Apply k-means with specified k

6 kmeans = KMeans(n_clusters=k, random_state=42)

7 clusters = kmeans.fit_predict(X_scaled)

I plotted inertia vs k and look for the "elbow point", this is the optimal K value as any higher K has diminishing returns.

However I will set up the App so the user can freely choose any cluster amount.

Visualizing Clusters (PCA)

Since the data has many dimensions, I used PCA (Principal Component Analysis) to reduce it to 2 or 3 dimensions for

visualization.

This preserves structure while simplifying the view.

The app includes both 2D and 3D PCA plots to explore clusters interactively.

1 # PCA for dimensionality reduction to 2D

2 pca = PCA(n_components=2)

3 X_pca = pca.fit_transform(X_scaled)

From this PCA plot, we can see the clusters very clearly (K=4), and we can even define playstyles based on the cluster

averages.

Additionally in the app, I also implemented a 3D interactive Visualisation for the user to explore. This somewhat resolves the

issue of having overlapping clusters in the 2D space.

I did a similar process for players, any players in the same cluster as eachother have similar profiles for that specific feature.

Example Findings

All of this analysis has been deployed on a streamlit App, the user can play around with it.

An interesting finding is Bukayo Saka, when K=18, features for creativity, we get this output (hide other clusters for clarity)

The Streamlit app lets users explore clusters dynamically.

An interesting insight:

When clustering players by creativity features with K=18, Bukayo Saka appeared at the edge of his cluster, showing he's

already very unique.

At K=19, Saka was placed in a cluster of his own, suggesting his creative profile is unmatched in the dataset.

Even at K=18, he shares a cluster with elite players like Salah and Son, indicating elite creativity, but Saka's data shows he s̓

on another level.

